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A method of studying the dynamics of a rigid punch vibrating on the surface of a prestressed half-space 

is developed by generalizing [l, 21 the method of factorization for integral equations, with the symbols 

of the kernels having branch points on the real axis. The investigations are carried out within 

the framework of the linearized theory of the superposition of small deformations on to a finite 

deformation (3,4]. A new approximate solution is constructed for the problem of the vibrations of a 

strip-like punch on the surface of a medium. The structure of this solution graphically exhibits the wave 

field under the punch and on the free surface and also enables one to carry out an efficient analysis of 

the effect of initial stresses on the wave process both under the punch and outside it. 10 constructing 

the solution, a special approximation [5] is used which takes account of all the characteristic features of 

the symbol of the kernels of the integral equation including branch points on the real axis. The 

vibration at the edges of the punch caused by the excitation of longitudinal and transverse waves by 

them in the prestressed medium, is demonstrated explicitly. 

AN EFFICIENT method of studying the effect of initial stresses on the wave process in the contact 
zone and on the free surface was developed in [all] within the framework of the linearized 
theory of elastic waves [6,7]. However, this method does not take account of the existence, in 
the kernel of the integral equation, of branch points on the real axis, which is typical of 
problems on the vibrations of a punch on the surface of a half-space. The effect of the branch 
points may be neglected [8-151 in the case of low-frequency vibrations of the punch, but these 
branch points must be taken into account at fairly high frequencies [l, 2,5]. 

1. Three states (configurations) [3, 4, 6, 71 are distinguished when investigating processes in 
a prestressed body: the natural (unstressed) state, the initially deformed state and the per- 
turbed state. Following [3, 41, let us introduce the system of coordinates x1, x,, X, associated 
with the initially-deformed state of the body which occupies the domain X, ~0, -“<x1, 
&SW. 

The boundary-value problem on the excitation of a prestressed medium by an oscillating 
load q(q, x,, t), distributed in the domain n is described by linearized equations of motion 
with boundary conditions [3,4] 

vx3=pa2U/at2 
n.@=q(x,,x,,t), x3=0, X,.X* ER 

n.O=O, x3=0. x,,x,f5R 

(1.1) 
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8=T*Vu+4 1 
Here, V is the Hamilton operator, defined in the coordinates of the initially deformed 

configuration, II is the displacement vector of an arbitrary point, p is the density of the medium, 
n is the outward normal to the surface of the medium, q is the specified stress vector, T is the 
initial stress tensor, G and g are the metric factors of the natural and initially deformed 
configurations respectively, F is the measure of the Finger deformation [3, 41 of the initial state 
and E(U) is the linear tensor of the perturbed state. The coefficients vk participate in the 
representation of the equation of state of the material of the medium [3,4] 

T=2 i- 

J 
$I@+ v,F + w#*) U-2) 

and is defined in terms of the elastic potential, In the case of a hyperelastic, compressible 
medium, which has an elastic potential of the form (Zk = I#‘) are invariants of the measure of 
the initial deformation) 

3= 3(1,,1,./,) (l-3) 

the coefficients v/k and Vv are defined by the formulae 

W. =r,p, a3 a3 a3 

k, = I3 $ 

WI =I,dl,+bar,. yJ2 =-K 

vim++/,+, v,, =-aw,, m=O 12 

(1.4) 

a. 
3 I 2 aI2 ’ ’ 

Let us further assume that the oscillations are of a harmonic nature and all the functions 
have the form f(x,, x,, x,, t)=f’(~,, x,, x,)e-ia)‘. We will subsequently omit primes and the 
exponential factor. 

2. Let us assume that the initial deformation is homogeneous and defined by the relation [3, 
41 (R and r are the radius vectors of a point of the medium in the initially deformed and natural 
configurations, respectively, y = 1 + Si, 6, are the relative elongations of the fibres directed in 
the natural state along the axes xi, i = 1,2,3, and Sy. is the Kronecker delta) 

R = r. A, F = AT A, A = 16;jUi ]i,;=,,2.3 

In this case, the components of the tensor 0 have the form 
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Using the methods of the operational calculus and the limiting absorption principle, the 
solution of boundary-value problem (1.1) can be written in the form (a and /I are the 
parameters of the Fourier transform with respect to the variables x, and x,) 

k(s.r,x,,o) = ] IK(a,p,x,,o)ei’“+B”dadS 
r,r2 

The contours I’, and I2 are chosen in accordance with the limiting absorption principle [l, 
21, and the behaviour of the elements of the matrix-function K( a, /3, x3, CD) on the real axis, the 
properties thereof being determined by the nature of the initial deformed state and the 
properties of the material of the medium. In the case when the initial stressed state is specified 
by the condition (ai are the components of the tensor T (1.2)) CT:, = CT& # c$ (state a), the 
matrix-function K(a, j3, 5, w) has the representation [l, 2, 12, 131 which is characteristic of 
dynamic problems in the theory of elasticity 

a’M++‘N 4(M-N) -iaS 

K(a$,x,,o)= @(M-N) p2k4+a2N -ipS 

iaS ipS R 

u= a +j? p? M = M(u,x~.co). N = N(u,x~,o), S= S(u,~~r~))r R = R(u,x~,@) 

M = [ a,m2eqq - c2m,eb2q]u”A-‘. N = eqquw21i, 

S = [s, -s21A--I, R=[l,r2-f,t,]A-I-‘, A=l,m,-m,12 

r,(u,x,) = d,eukxk, sk(u,x3) =lkb,_keukxk, k = 1,2 

Here 

lk = A3a: - A,d,, mk = l%dk + %u2]ok 

dk =.(A,u,’ - R,)l As, k = 1.2, 1, = A,$ 

u,:=(D,+~)/20,, k=1,2, 6;=R2/A3, D,=A3& 

D2=A3R3+&R,-~2~2, D,=R,R,, C=D+D,D3 

Rk = AkU2 - po2, k=l,2, R3=A7u2-/m2 

A, = g,,X,,. A2 = go4yl,zt A3 = go+‘,3 

% = 280&?. As = go(cp,, +2X,,). 4 = go&, 

A7 = gov:y13. A8 = gon3. go = Wet A)-’ 

(2.2) 

In the case when c$ #a& = ai (state b), the elements of the matrix function K (a, j3, x3, 
CD) =Il Kij Hi, j=l, 2, 3 have the form 

K,, = ]d,f,: -d&tA--I. 4, =@(f,9 -fp +o,P”&A-’ 

K,, = -ialo,f,‘: - o,f,“, + f,“, )A-‘, K2, = K,, 

K22 = C& - .& + o$-2f$3 tp2A-‘. K23 = -$ia,fi - 02f& + fitA--’ 

K31 = -K,,v K32 I-K2j, K,, = b,f3: -%f$ +f$tA--I 
A = a,l,f,, - 12f32 + 4f3, 

hk = a3-ko3n3_k13 - I3_kn3. f2k = /,-km3 - a3_ka3q_k13 
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f3k = ~~_,[ng_~n, -n3_km31, k = 12 

fi3 = “1 LO112 - IlO* 1, f23 = CJzq4 - &Jlmi 

f33 = o,o,n,[m, - ~1, &’ = f;.keokx3, i,k = 1,2,3 

mk=4kk+a2A8, ~k=A&(~dk+~2A,2) 

&=~2(A82+A32), d,=(A&;-R,)/A,, k=1,2 

m,=a’A,, 13=4-A42, n,=A,2a~+/32A, 

6;,2=[D2+I:y2][2D1]-1, a;=R,/A,, 

D, = AZ&, D, = A,,R5 + A,R, -I- A,2A2p2 + R7 

D3 = R,,R, -I- R,p2, C= 0; - 4D,D,, 

R4 = A,a2 + A,,p’ - po2 

R, = A,a2 + A2P2 - po2, 

R6 = A7a2 + A&’ - po’ 

R7 = (As2A, - Ai)a2 + As2A2P2 - pm2 

A32 =80V:W23* 42 = gO(~23+2x23) 

As2 =gO(d)23* 42 =2gOx23 

(2.3) 

(A,,..., 4 are defined in the last formulae of (2.2)). 
In the general case when c$ f cr; # &(u, f u, f r+), the elements of the matrix-function K( a, 

p, n,, co) are significantly more cumbersome. 

3. Expression (2.1) defines the displacement of an arbitrary point of the medium acted on by 
a specified load q(x,, x2). In the case of the problem of the vibration of a punch on the surface 
of a prestressed half-space, it is necessary to put X, = 0 in expressions (2.1). Here, q((x,, x2) is 
an unknown function of the contact stress distribution and u(x,, x2) = f(x,, x2) is the specified 
amplitude of the displacements of the punch base. The problem of the vertical vibrations of a 
strip-like punch, which, in the plane view, occupies a domain I x1 IS a on the surface of the 
prestressed half-space (the case of shear vibrations has been investigated in [16]) is a special 
case. Its solution reduces to a system of integral equations (f(x) = (x(x), h(x)), q(x) = (ql(x), 
q3(x)) are the displacement and stress vectors, respectively) which can be written in the 
dimensionless form 

f’(x;) = &jk(x; - c’)q’(t,‘)$‘, Ix;ls 1 
1 

k(t’) = jK(a)eimda, K(a) =IIK;i(a)lli,j=1,3 
r 

We will henceforth omit the primes. In the case of an initial state u 

(3.1) 

h(a)=M”(a), K,,(a)=-iaSO(a), K31(a)=_~,3(a), K33(a)=R~(a) (3.2) 

where 
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(3.3) M’(a) = (o,q - 02m,)A-’ 

So(a) = (l,oz - Izal)AW’, R’(a) = (I,d, - /&)A-- 

The coefficients f,, m,, d,, 6, are defined by formulae (2.2). 
In the case of an initial state b 

K,,(a)=R"(a), K,,(a)=iaS"(a), K3,W=-K,,(a), K&)=M"(a) (3.4) 

The functions ti, So and R" are defined by formulae (3.3), but the coefficients f,, m,, dk 
and 6, are defined by formulae (2.3). 

Expression (3.1) is a system of first-order integral equations in the unknown functions of the 
contact stresses q(nl, x2). The functions MO, s”, To and R" (3.3) are analytic in the complex 
plane with non-intersecting cuts which strictly lie in the first and third quadrants (there are two 
in each of them) and have two poles on the real axis (one each on the positive and negative 
semi-axes). The cuts go from the branch points, which are determined numerically from the 
equation o,(a, p, w, cr,“l, a&, o&) = 0 (k = 1, 2, 3), to infinitely remote points. These functions 
exhibit qualitatively different behaviour on the different segments of the real axis: when 
la IL rc2(rrz >KJ they take real values, when la IS rrl, they are purely imaginary and, when 
K~ <I a I< K,, they are complex. The representation I a I f(a) = ci + 0(a-') holds for the functions 
R" and M” and for the function S”(a) - a??"(a) = c, + O(a") when a + 00. Here ci (i = 1, 2,3) 
are functions of the initial stresses. 

4. A detailed investigation of the effect of the initial deformation on the interaction between 
a punch and a prestressed medium can be carried out exclusively by analysing the solutions of 
the integral equation of the corresponding problems. As an example, let us consider the 
problem of the vertical vibrations of a punch, which is strip-like in plan view, on the surface of 
a half-space. There is no friction between the punch and the half-space. Let us suppose that the 
initial stress-strain state of the half-space is uniform and is determined by the condition 
0 CY,, #:aL f a&. 
The problem reduces to solving the integral equation 

(4.1) 

&tr) = jKJ3(a)eiafda 
I- 

(4.2) 

the function &(a) is defined by formulae (3.3) and (3.4) with the coefficients (2.4). The 
contour I coincides with the real axis, only deviating from it when going downwards around 
the positive singularities of &(a), the properties of which have been noted above, and 
upwards around the negative singularities. 

By virtue of the properties of K,,(a) described above, a number of numerical and asymp- 
totic methods ([5, 8-161, for example) may be used to solve the integral equation (4.1). 
Following the approach proposed in [l, 21, we replace K,,(a) by the function K *(a) [5] 

K*(a)= 
AJIm 

(a*-c*)(a*-&)(a*-t&f) 
M+(a)M_(a), Ima,> 

(4.3) 

The function K*(a) retains all the properties of K,,(a) and exhibits the same qualitative 
behaviour on the real axis. The poles a=fu,, and a= fg compensate for the zeros of the 
functions M+(a) and M_(a). The constants A, B (A > 0, B > 0) are chosen from the condition 



718 T.I.BELYANKOVA ~~~V.V.KALINCHUK 

that the functions K*(a) and K,,(a) should be equal to each other at zero and infinity. 
It is clear that the function K*(a) admits of the factorization 

K*(a) = K+(aK.(u) 

d"jq 

Xf(a)=(a~5)((rTa,)(aTiSO) 
M,(a), d"=dr 

d* are chosen in such a way that the condition K+(a) = K_(a) is satisfied. 
Taking account of the properties of the function K *(a) noted above, we reduce Eq. (4.1) 

after some algebra [12, 131, to a system of second-order integral equations of the following 
form (the upper and then the lower signs are taken in succession) 

Xfz,f) = -& JX(a,+)P(a,z)da+a(z,+), Imz G 0 
J-l 

(4.5) 

P(a,z)= K_(a)e-"'"[K+(a)(a-tz)]-' 

in the auxiliary unknowns X(z, +) which are combinations of @+(a), W(a), i.e. of the Fourier 
transforms of functions which are continuations of the right-hand side of Eq. (4.1) in the 
domains n > 1 (~+(~)) and XC 1 (~-(~)), respectively and F(a) is the Fourier ~ansform of the 
functionf(x). The contour I, lies strictly above the contour I, but does not leave the regularity 
zone which is a certain neighbourhood of the contour I [l, 21. The solution of the integral 
equation (4.1) is determined by the formula [12,13] 

(4.6) 

The behaviour of the free surface outside the punch has the form 

cp*w= &!@*(a)emimda, Ixl>l (4.7) 

In order to construct a solution of (4.5) we deform the contour I; in the lower half-plane (in 
the domain of regularity of X(a, k) K_(a)) in order that it passes around the cuts from the 
branch points -rcl, -x2 to infinitely remote points parallel to the imaginary axis from +zl -im 
to -PZ, and from -or, -in to -rrz on the left of the cuts and from -K, to -rcl -i= and from -rcz 
to -K~ -im on the right of the cuts). On representing the integrals over the left and right edges 
of the cuts in the form of a sum and taking account of the relation between the values of K+(a) 
on these edges, we represent system (4.5) in the form [16] 

N+M 
X(2,+)=+ C X(-zk,k)-!La(z,+)+O(e-ziz~+~+~), ImzSO 

&=I z - Z& 
(4.8) 

,. = _L. K- (-Zk I ezizk A_, 

’ ni K+(-Z,) 
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where z,=rcl+it, (k=1,2,...,N) are mesh points along the edges of the cut, [-K,, -rcI -b] 

and z,=rc2+itt (k=N+l, . . . , N +M), are mesh points along the edges of the cut [-rcz, 
-~~-b]. Letting z = -z. (n = 1, 2, . . . , N +A4), we obtain a finite system of algebraic 
equations in X(z,, _ +) [16], the solution of which, when substituted into (4.8), yields the 
formula 

N+M rk N+M 
x(2,+)=+ x - I: $a(-z,,+) 

ktl z- Zk I=1 1 + a(z,*), Imzs 0 (4.9) 

where Sil are elements of the matrix which is the inverse of the matrix of the form 

Af ;(6.‘k)kJ= ,,..., N+&, 

The functions q(x) and cp(x), w(x) are recovered using formulae (4.6), (4.7). 

5. Let us consider the case when the displacement of the base of the punch is specified by the 
function 

f(x) = eiqX, IxlG 1 (5.1) 

Following [l, 2, 12, 131, we continue this function to the intervals x > 1 and xc-l. We 
thereby change to the new functions v(x) and r,@(n) 

q’(x) = q(x)-eiv, X>l, y’(x)=y(x)-e+‘, xc-1 (5.2) 

Then the functions a( z, &) on the right-hand sides of Eqs (4.8) are represented in the form 

a(r.*) = -_I ef$ 

2 & ol)(z T 11) 
(5.3) 

Taking account of relationships (4.5) and (4.8) and applying formulae of the operational 
calculus [17,18] to (4.6) and (4.7) we obtain 

Here 

@lx 
q(x) = -- 

W-0 
+4+(4+m) (5.4) 

(5.5) 

q&(x) = GofeiKn’“(““)[x(17 x)1-% 

q:n(x) = G:,&t:), m = 1.2.3 

(5.6) 

q*(z) = e-iz(‘Tr)erf n -i(K, + z)(iT x)(--I’(K, + z)]-H 

nf --LNiM /$a”, 
ef* 

amtl K,(~) 2 k= l  I , m=0,1,2,3, n=1,2 

(5.7) 

(5.8) 



B 1 - 
d, = 

d+(B2 -4)' 
d, = 

d+(B* -4)' 
t; = +q, t; = -b,, t; = -b. 

The behaviour of the free surface outside the punch is described by the function 

The coefficients 
expressions 

A=1 

Y*t(~)=e-~~('~~)erf -i(rr,z)(-l+x)[-i(rr,-z)] -K ” (5.11) 

D& = ~~~e-“(‘~ 
I 
p$ &-;;$b$z, , 1 m = 2,3 (5.12) 

r = 

DE = y2ne-ixf4p;nf, y2,, = t?d-fi, C& = -$&‘~b: 

ni 
a amk W 

are determined from an expansion in simple fractions of the 

[(a+q)K+(a)l-’ and [(a-zk)K+(a)l-’ 

respectively, while the coefficients &$ and j?,,,k are determined from the expansion 

K_(a)[a t q]-’ and K_(a)[a f zk 1-l 

respectively. The functions K,(a) are defined by formulae (4.4). The constants 4, Z&, b,,, go 
which occur in (5.7) and (5.10) are zeros of M+(a) (4.3) and 

L(a) = Bad=-/= - (6 + IC~)~ 

respectively. 
It is seen from the representation (5.6) that the initial stresses have an effect on the 

singularities of an oscillatory character. 
It follows from (5.5) and (5.7) that rapidly decaying waves move from the edges of the punch 

with velocities equal to those of the longitudinal and transverse waves in the prestressed 
medium. Similarly, rapidly decaying waves which move from its edges and have the velocities 
of longitudinal and transverse waves are developed on the free surface outside the punch (5.9). 
Apart from these waves, one non-decaying wave (Im {=O) propagates in each of the two 
directions along the surface from the edges of the punch, with the initial stresses having an 
effect on the phase velocity of this wave as well as on the velocities of the rapidly decaying 
waves. 
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6. As an example, let us consider the problem of the vibration of a plane punch (rj=O). For this 

purpose, it is necessary to put ?I= 0 in formulae (5.1), (5.2), (5.4)-(5.8) and (5.9)-(5.12). Here, there is no 

appreciable simplification of expressions (5.4)-(5.12). The validity of the equalities 

D;, = D;, = D,, , C,:, = C,;, = Ckn , G;,, = G,& = G,, 

b;=b;=b,, B,:,=B,=B, 

follows from (5.3), (5.8) and (5.12) which determines the symmetry of the wave process on the surface of 
the medium. We note that, when r~ = 0 in the unstressed case, the degenerate component of the function 
q(x) (5.4) is qualitatively the same as the asymptotic solution [5] in the case of high-frequency vibrations. 

The amplitude of the reactive force, acting on the planar punch (ri = 0) from the half-space, has the 

form 

p= jq(x)dr=q+f*, fn=fo(),+f~,+f~, (6.1) 
-1 

where 

3 G 
e,=-2i C zLOn(lz)+i C 

m=2 I +tn 
N+“L&r) 
k=l zk 

~,(X)=e-i~erf~~[-i(Kn+X)]-X, n=1,2 

(6.2) 

(6.3) 

Formulae (5.4)-(5.8) and (5.9)-(5.12) quite graphically represent the structure of the wave field both 
under the punch and on the free surface. The parameters K, (k= 1, 2) are related to the initial 
deformation in a complex way, and the initial stresses therefore have an immediate effect on the nature of 

the wave field. 

7. Formulae (5.4)-(5.12) and (6.1)-(6.3) are constructed in the most general case, regardless of the form 
of the initial stress state and the properties of the material of the medium. In order to carry out further 

investigations it is now necessary to specify the properties of the medium. For this purpose, we assume 

that the material of the medium is compressible, initially isotropic and has the elastic potential (1.3). As 

the latter, we use the Mumaghan potential [3,4] 

-3L2+; l,(F)+;(h+2p-31-2m)!,(F)+ b(F)- 

-mfl(F)f2(F)+~(l+2m)l:(F)+~(/3(F)-l)’ 
1 

(A and ~1 are Lame constants, and 1, m and n are third-order constants). Assuming that the initial 
deformation is uniform (u, = const), we obtain from (1.4) 

yl, =$ (I, -3))1-2p++, -3)‘+m(!, -+(I1 -1) 1 
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w,“$ [ 2p+m(I,-3)+$ I 
A material with the following parameters was used for the numerical calculations: p= 7.748~10~ 

hgfm’, il = 1.1 x 10” N/m2, fl= 0.804 x 10” Nkm2, I = -6.32 x 10” N/m’, m = -3.25 x 101’ Nlm’, n = -8.04 

x 10” N/m2 (09GZS steel f3,4f). 
The initial stressed state was assumed to be uniaxial and defined by the condition of, = p, 0; = o& = 0. 
Graphs of the functions (q’(x) = q(x) without any initial deformation of the medium) Re q’(x) and Im 

q’(x) are shown in Figs 1 and 2 for various values of the vibrational frequency of the punch (curves l-5 
correspond to the values K~ =0.9, 3.0,4.5,7.5 and 10.5). It is seen that, at the Iow frequency K, =0.9, the 
distribution of the contact stresses is close to the static one (the function Re q*(x) has a constant sign and 
is significantly greater than Imq’(n>). At the intermediate frequency (rcz = 3-O), Em q’(x) increases 

sharply and Re q’(x) changes sign in the contact region while retaining its monotonic form. At high 

frequencies (curves 3-5) the plot of the contact stresses acquires an oscillatory form due to the fact that 
the wavele’ngth of the shear wave excited by the edges of the punch becomes Iess than its size. The effect 

of the longitudinal wave occurs in the curve of the stress graph (curves 4, 5). The superposition of the 
oscillating terms on the penetrating (constant at fixed frequency) component q’(x) transforms Im q’(x) 

initially to a saddle-shaped form and, then, as the frequency is increased further, to a serrated form. 
The functions Re Q(X) (Fig. 3) and Im n(x) (Fig. 4), where r/(x) = [q’(x) - q(x)]1 x lo3 is the change in 

the contact stresses, are shown as a function of frequency (curves 1-5 correspond to the same values of rz 
as in Figs 1 and 2) at a fixed initial deformation. At a low frequency, the effect of the initial deformation 
has a monotonic form over the entire domain of contact with the exception of the edges of the punch. the 
effect of the initial deformation becomes more compIex at intermediate frequencies. For instance, already 
when K~ = 3.0 (curve 2), Re rl(x) and Im &x) change sign in the contact region. At high frequencies 

(curves 4 and S), the effect of the initial deformation acquires an oscillatory character and the amplitude 

of the oscillation increases with frequency. 

a 85 7 

F1c3.2 Fro. 1. 
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FIG. 3. FIG. 4. 

The functions Re ?&x) (the solid curves) and Im q(x) (the dashed curves) are shown in Figs 5 and 6 as a 
function of the magnitude of the initial stresses (curves 1,2, and 3 correspond to the values p= 2.5 x 10d, 

5 x lo+ and 10”) at fixed values of the frequency: K* =4.5 (Fig. 5), K~ =7.5 (Fig. 6). It is seen that there 

are points under the punch where the initial deformation has no effect, as well as points where the effect 

of the initial deformation is a maximum. The number and locations of these points depend very much on 
the frequency. As the frequency increases, the number of points where the initial deformation has no 

effect on Re q(x) and Im q(x) increases. 

-2,s 
0 0.5 ? 

FIQ 15. 
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